Roll No.

Total Pages : 04

OMMS/M-20 13041 MANAGEMENT SCIENCE CP-201

Time : Three Hours]

[Maximum Marks: 70

Note Attemp#*ight* questions, out of ten questions, from Part A (each of 5 marks)*thæn*edquestions out of five questions (each of 10 marks) from Part B.

Part A

1. Discuss the features of management science.

2. Solve the following LPP graphically : Maximize $Z = x_1 8 + 16$ Subject to :

 $x_{1} + x_{2} \le 200$ $x_{2} \le 125$ $3x_{1} + x_{2} \le 900$ $x_{1}, x_{2} \ge 0$

- 3. Using suitable examples, explain and illustrate :
 - (a) Saddle point
 - (b) Rule of dominance.

(3)L-13041

- **4.** Discuss the types of inventories and advantages nd disadvantages of maintaining inventories.
- Write a note on graphic approach to sensitivity analysis of LPP.
- 6. What is integer programming *dne*Geven mple each of a pure and a mixed integer programming problem.
- 7. Identify all the paths in the following network :

- **8.** What is simulation ? What are the benefits and application areas of simulation ?
- **9.** In a queuing system, if arrival rate is 6 per hour and service rate is 10 per hour, find :
 - (a) Utilisationparameter
 - (b) L_q
 - (c) L_S
 - (d) W_a.

(3)L-13041

10. Find the optimal assignments to the following assignment problem for minimising the cost :

	Jobs		
Workers	А	В	С
Р	4	2	8
Q	6	3	10
R	11	7	12

Part B

11. Discuss in detail the scope, methodology and limitations of management science.

12. Solve the following LPP by Simplex method : Maximize $Z = x_{1}^{4}0 + 3_{2}^{4}$

Subject to :

 $\frac{1}{4} \frac{1}{4} \frac{1}$

- **13.** What is Queuing Theory ? In which types of problem situations can it be applied successfully ? Give the general structure of a queuing system and explain.
- **14.** (a) Discuss the assumptions, applications and limitations of game theory.
 - (b) Discuss the process of simulation.

(3)L-13041

15. Three time estimates (in weeks) vz ϕ_p timistic likely t'_m) and pessimistic times of a PERT project are as given below :

ο	m		
4	6	8	
5	7	15	
4	8	12	\sim
15	20	25	
10	18	26	
8	9	16	6
4	8	12	•
1	2	3	
6	• 7	8	
	• 4 15 10 8 4 1 6	• <i>m</i> 4 6 5 7 4 8 15 20 10 18 8 9 4 8 1 2 6 7	• <i>m</i> 4 6 8 5 7 15 4 8 12 15 20 25 10 18 26 8 9 16 4 8 12 1 2 3 6 7 8

Draw the network, identify the critical path and find the probability of completing the project in 55 weeks.

(3)L-13041